

Advanced Circuit Materials

Advanced Circuit Materials Division

100 S. Roosevelt Avenue Chandler, AZ 85226 Tel: 480-961-1382, Fax: 480-961-4533 www.rogerscorp.com

> Data Sheet RT/duroid 6035HTC

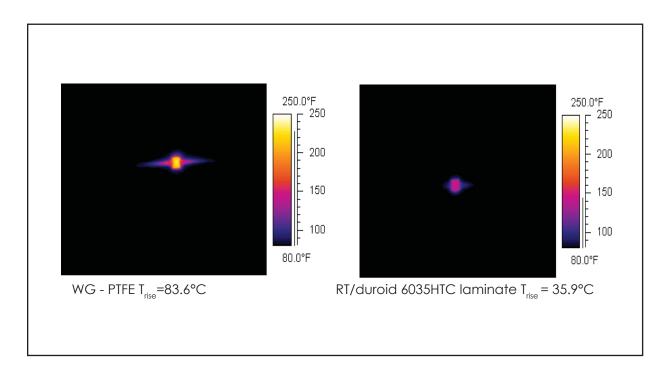
RT/duroid® 6035HTC High Frequency Laminate

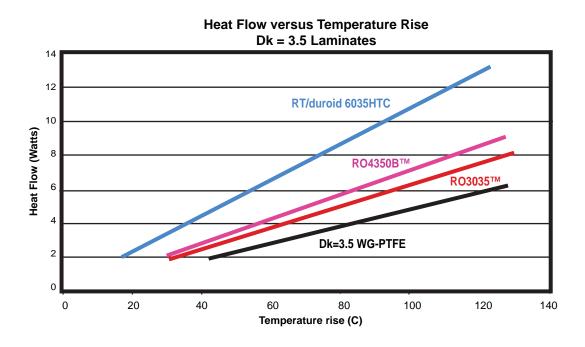
Features	Benefits		
High thermal conductivity	Improved dielectric heat dissipation, enabling lower operating temperatures for high power applications		
Low loss tangent	Excellent high frequency performance		
Thermally stable low profile and reverse treated copper foil	Lower insertion loss and excellent thermal stability of traces		
Advanced filler system	Improved drillability and extended tool life compared to alumina-containing circuit materials		

Applications:

- High power RF and microwave amplifiers
- Power amplifiers, couplers, filters, combiners, power dividers

RT/duroid® 6035HTC high frequency circuit materials are ceramic filled PTFE composites for use in high power RF and microwave applications.


With a thermal conductivity of almost 2.4 times the standard RT/duroid 6000 products, and copper foil (ED and reverse treat) with excellent long term thermal stability, RT/duroid 6035HTC laminates are an exceptional choice for high power applications.


Rogers advanced filler system enables excellent drillability, reducing drilling costs as compared to standard high thermally conductive laminates which use alumina fillers,

At increasing power levels, Rogers measured the heat rise of a resistor placed on a microstrip circuit attached to a controlled heat sink. Thermal imaging was used to generate temperature rise data.

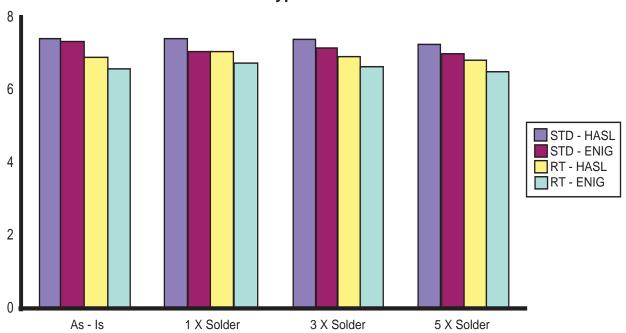

Comparison of WG-PTFE and RT/duroid 6035HTC Thermal Images at 4 Watts:

Chart 1. Four different 3.5 Dk laminate materials were tested, and the RT/duroid 6035HTC most effectively dissipated heat away from the resistor to enable the lowest temperature rise.

Cu Peel Strength Through Solder Exposures Varied Cu Types and Final Finishes

Chart 2 illustrates the stable copper peel strength maintained on 0.125" copper trace widths after multiple sixty-second exposures to 288°C(550°F) solder. Rogers matched copper foils to RT/duroid 6035HTC, which exhibit excellent thermal stability after multiple high temperature exposures enabling long-term reliability of circuitry for high power, high temperature applications.

Typical Values RT/duroid 6035HTC High Frequency Laminate					
Property	Typical Value [1]	Direction	Units	Condition	Test Method
Dielectric Constant, ϵ_{r} Process	3.50 ± 0.05	Z		10 GHz/23°C	IPC-TM-650 2.5.5.5 Clamped Stripline
[2]Dielectric Constant, ϵ_{r} Design	3.6	Z		8 GHz - 40 GHz	Differential Phase Length Method
Dissipation Factor,	0.0013	Z		10 GHz/23°C	IPC-TM-650, 2.5.5.5
Thermal Coefficient of ϵ_{r}	-66	Z	ppm/°C	-50°C to 150°C	mod IPC-TM-650, 2.5.5.5
Volume Resistivity	108		MΩ•cm	COND A	IPC-TM-650, 2.5.17.1
Surface Resistivity	108		ΜΩ	COND A	IPC-TM-650, 2.5.17.1
Tensile Modulus	329 244	MD CMD	kpsi	40 hrs @ 23°C/50RH	ASTM D638
Dimensional Stability	-0.11 -0.08	CMD MD	mm/m (mils/inch)	0.030" 1 oz EDC foil Thickness after etch +E4/105	IPC-TM-650, 2.4.39A
Coefficient of Thermal Expansion	19	Х	ppm/°C	-55 to 288°C	ASTM D-3386
	19	Y			
	39	Z			
Thermal Conductivity	1.44		W/m/K	80°C	ASTM C518
Moisture Absorption	0.06		%	D24/23	IPC-TM-650 2.6.2.1 ASTM D570
Density	2.2		gm/cm³	23°C	ASTM D-792
Copper Peel Strength	7.9		pli	20 sec.@ 288°C	IPC-TM-650 2.4.8
Flammability	V-O anticipated				UL 94
Lead-Free Process Compatible	YES				

^{*} Reported UL values are preliminary and reflect anticipated results of full UL testing.

^[2] The design Dk is an average number from several different fested lots of material and on the most common thickness/s. It more detailed information is required, please contact Rogers Corporation. Refer to Rogers' technical paper "Dielectric Properties of High Frequency Materials" available at http://www.rogerscorp.com/acm.

Standard Thickness	Standard Panel Size:	Standard Copper Cladding
0.010" (0.254mm) 0.020" (0.508mm) 0.030" (0.762mm) 0.060" (1.524mm)	12" X 18" (305 X457mm) 24" X 18" (610 X 457mm)	1/2 oz. (18µm), 1 oz. (35µm) electrodeposited copper foil and reverse treat copper foil.

The information in this data sheet is intended to assist you in designing with Rogers' circuit material laminates. It is not intended to and does not create any warranties express or implied, including any warranty of merchantability or fitness for a particular purpose or that the results shown on this data sheet will be achieved by a user for a particular purpose. The user should determine the suitability of Rogers' circuit material laminates for each application.

These commodities, technology and software are exported from the United States in accordance with the Export Administration regulations. Diversion contrary to U.S. law prohibited.

^[1] Typical values are a representation of an average value for the population of the property. For specification values contact Rogers Corporation.
[2] The design Dk is an average number from several different tested lots of material and on the most common thickness/s. If more detailed information is