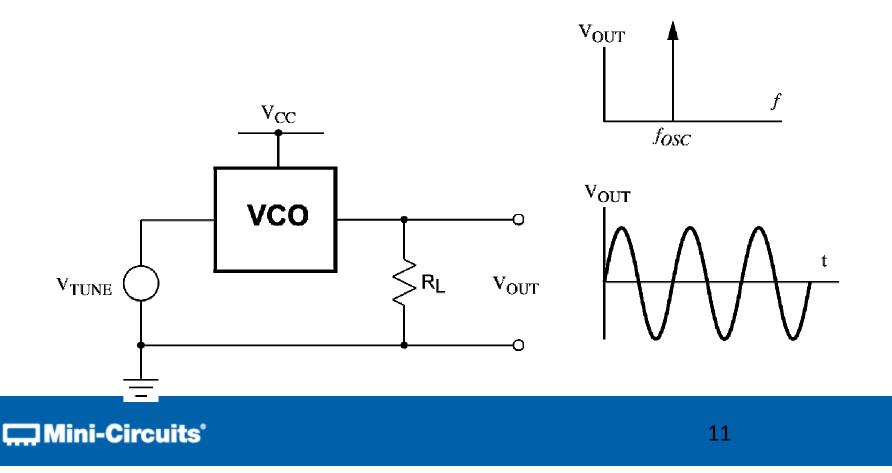
VCO Fundamentals

John McNeill Worcester Polytechnic Institute

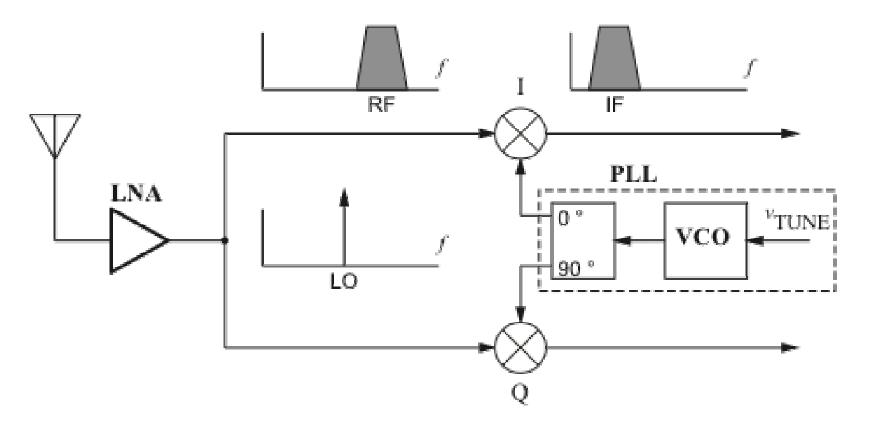
mcneill@ece.wpi.edu

Overview

- Functional Block Concept
- Oscillator Review
- Basic Performance Metrics
- Methods of Tuning
- Advanced Performance Metrics
- Conclusion

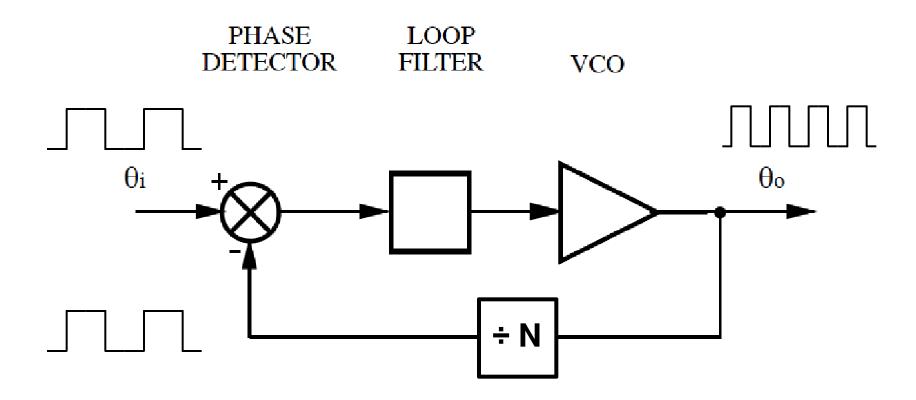

Overview

- Functional Block Concept
 - Applications
 - Specifications
- Oscillator Review
- Basic Performance Metrics
- Methods of Tuning
- Advanced Performance Metrics
- Conclusion



Functional Block Concept

 Input control voltage V_{TUNE} determines frequency of output waveform



Applications: RF System

- Downconvert band of interest to IF
- VCO: Electrically tunable selection

Applications: Digital System

Clock synthesis (frequency multiplication)

J. A. McNeill and D. R. Ricketts, "The Designer's Guide to Jitter in Ring Oscillators." Springer, 2009

Specifications

VOLTAGE CONTROLLED OSCILLATORS 50 Ω 12.5 MHz to 3 GHz

MOS ROS Case CZ682 Case CK605, CK1113, CK829

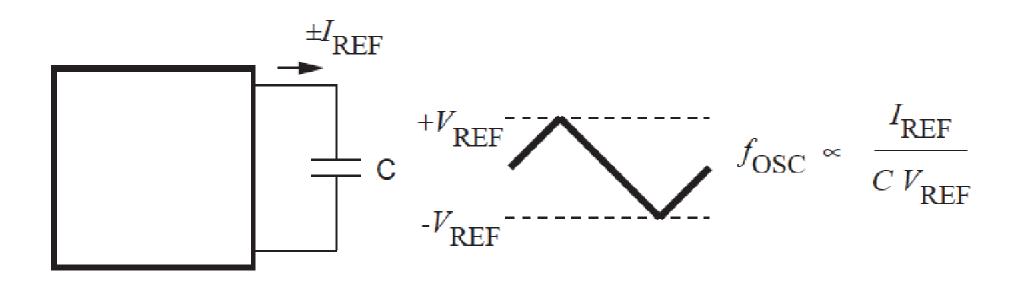
JTOS Case BK377

JCOS Case BG419

MODEL PREFIX	FREQUENCY (MHz)	POWER OUTPUT (dBm)	TUNE VOLTAGE (V)				PULLING (MHz) pk-pk @12 dBr	PUSHING (MHz/V)	TUNING SENSITIVITY (MHz/V)	HARMONICS (dBc)		3dB MOD. BANDWIDTH (kHz)	POWER SUPPLY	nt
	Min. Max.	Тур.	Min. Max.	1 1 kHz k⊦	0 100	1 MHz	Тур.	Тур.	Тур.	Тур.	Max.	Тур.	Voltage Curren (V) (mA) Nom. Max.)

LINEAR TUNING Wideband

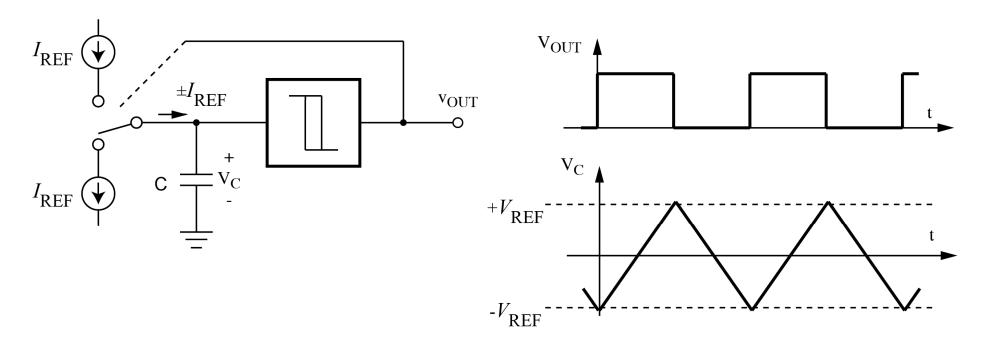
JCOS-175LN	125	175	+3.7	1.017.01.014.00.020.00.020.0	-95	-118	-138 -158	0.08	0.05	3-5	-25 -20	2900	12.0	20
JCOS-820BLN	807	832	+3.0		-88	-112	-132 -151	0.4	0.4	6.0	-24 -20	2000	10.0	25
JCOS-820WLN	780	860	+9.0		-90	-112	-132 -150	4.5	0.3	8.0	-13 -8	2000	9.0	25
JCOS-1100LN	1079	1114	+8.5		-88	-110	-130 -150	7.5	0.5	4.5	-15 -10	2000	8.0	25
JTOS-25	12.5	25	+8.0	1.0 11.0	-95	-115	-135 -155	0.03	0.02	1.0-4.0	-26 -13	130	12.0	20
JTOS-50	25	47	+8.5	1.0 15.0	-88	-108	-127 -147	0.06	0.04	2.0-2.6	-19 -12	50	12.0	20
JTOS-75	37.5	75	+8.0	1.0 16.0	-89	-110	-130 -140	0.15	0.11	2.8-4.0	-27 -20	125	12.0	20
JTOS-100	50	100	+8.3	1.0 16.0	-83	-108	-128 -140	0.6	0.2	3.7-4.8	-35 -20	100	12.0	18
JTOS-150 JTOS-200 JTOS-300 JTOS-400	75 100 150 200	150 200 280 380	+9.5 +10.0 +9.0 +9.0	1.0 16.0 1.0 16.0 1.0 16.0 1.0 16.0 1.0 16.0	-82 -84 -82 -82	-106 -105 -102 -102	-127 -147 -124 -145 -122 -142 -122 -142	0.8 1.0 1.0 1.4	0.3 0.2 0.2 0.4	5.8-6.7 6-10 9-14 10.5-17.1	-23 -17 -25 -20 -28 -20 -25 -20	112 110 120 130	12.0 12.0 12.0 12.0	20 20 20 20
JTOS-535	300	525	+9.5	1.016.01.016.00.518.01.018.0	-75	-97	-117 -137	2.0	0.5	10-24	-28 -20	115	12.0	20
JTOS-765	485	765	+8.0		-75	-98	-118 -138	2.0	0.5	20-30	-30 -20	100	12.0	20
JTOS-850VW	400	850	+6.0		-74	-96	-116 -136	6.0	1.5	15-80	-20 —	185	5.0	20
JTOS-1000W	500	1000	+7.0		-73	-94	-114 -134	5.0	1.0	30-40	-26 -20	100	12.0	25


Overview

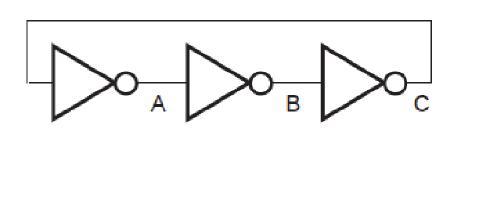
- Functional Block Concept
- Oscillator Review
 - Frequency Control
 - Amplitude Control
 - Types of Oscillators
- Basic Performance Metrics
- Methods of Tuning
- Advanced Performance Metrics
- Conclusion

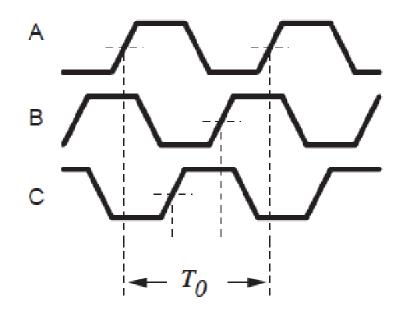
Oscillator Review

- Types of Oscillators
 - Multivibrator
 - Ring
 - Resonant
 - Feedback
- Basic Factors in Oscillator Design
 - Frequency
 - Amplitude / Output Power
 - Startup


Multivibrator

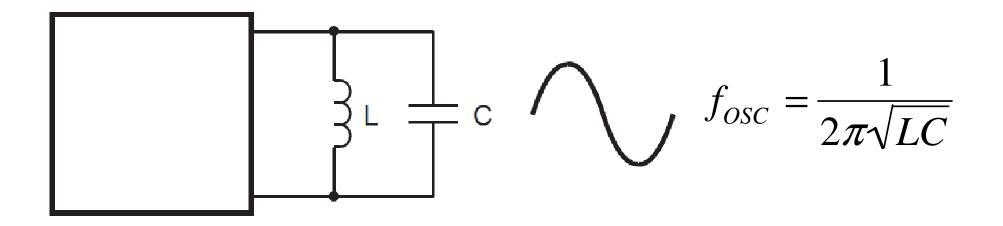
- Conceptual multivibrator oscillator
 - Also called astable or relaxation oscillator
- One energy storage element

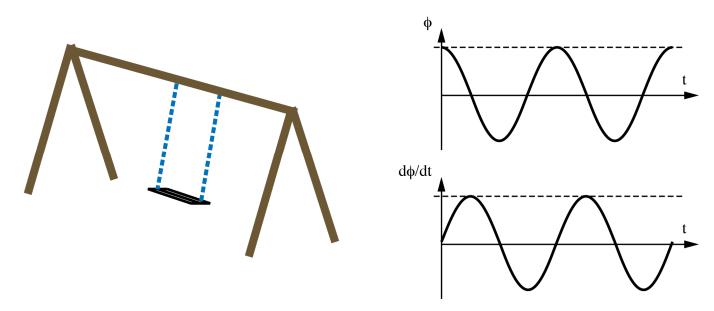



Example: Multivibrator

- Frequency: Controlled by charging current I_{REF} , *C*, V_{REF} thresholds
- Amplitude: Controlled by thresholds, logic swing
- Startup: Guaranteed; no stable state

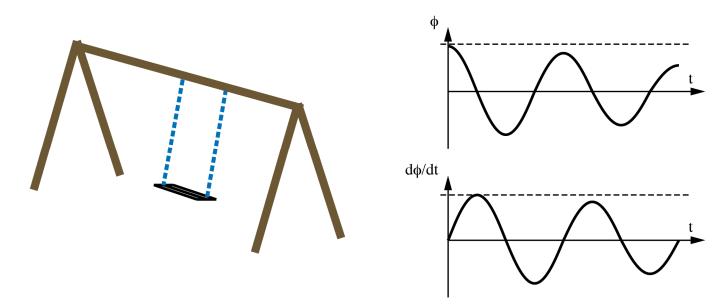
Ring Oscillator



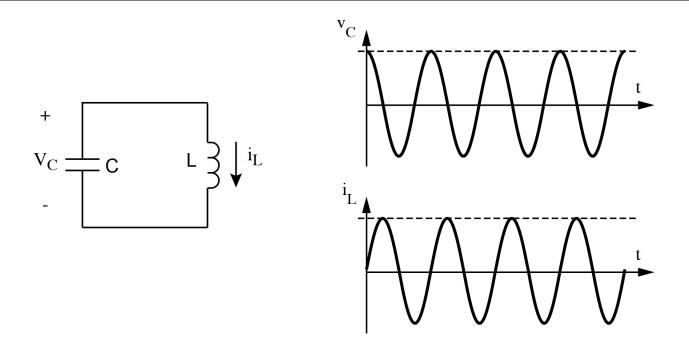

- Frequency: Controlled by gate delay
- Amplitude: Controlled by logic swing
- Startup: Guaranteed; no stable state

Resonant Oscillator

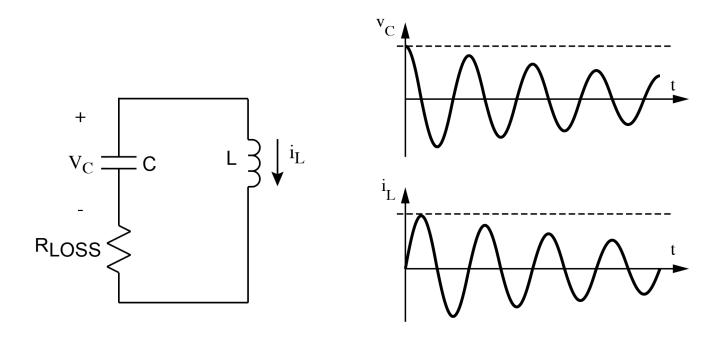
- Concept: Natural oscillation frequency of resonance
- Energy flows back and forth between two storage modes



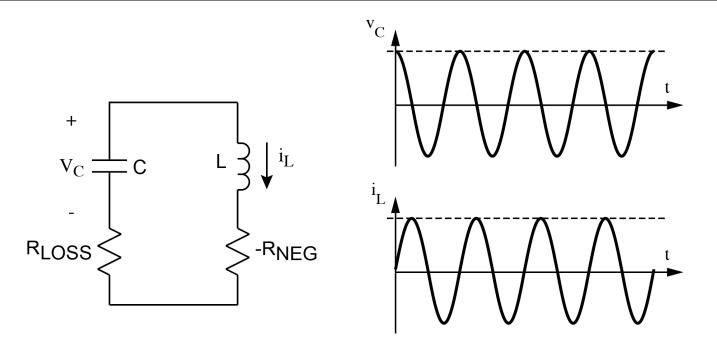
Resonant Oscillator (Ideal)


- Example: swing (ideal)
- Energy storage modes: potential, kinetic
- Frequency: Controlled by length of pendulum
- Amplitude: Controlled by initial position
- Startup: Needs initial condition energy input

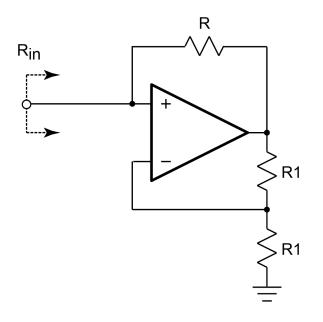
Resonant Oscillator (Real)


- Problem: Loss of energy due to friction
- Turns "organized" energy (potential, kinetic) into "disorganized" thermal energy (frictional heating)
- Amplitude decays toward zero
- Requires energy input to maintain amplitude
- Amplitude controlled by "supervision"

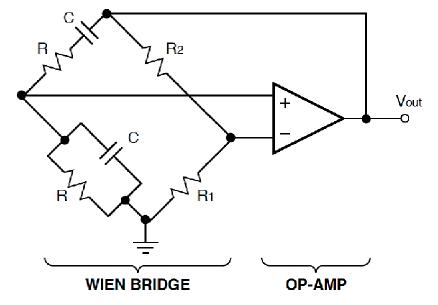
LC Resonant Oscillator (Ideal)


- Energy storage modes: Magnetic field (L current), Electric field (C voltage)
- Frequency: Controlled by LC
- Amplitude: Controlled by initial condition
- Startup: Needs initial energy input (initial condition)

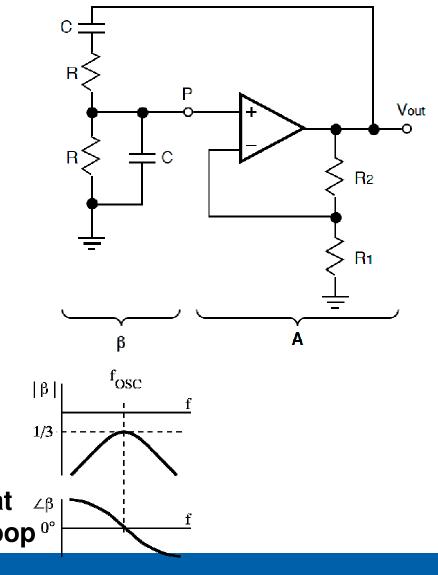
LC Resonant Oscillator (Real)


- Problem: Loss of energy due to nonideal L, C
 - Model as resistor R_{LOSS}; Q of resonator
- E, M field energy lost to resistor heating
- Amplitude decays toward zero

LC Resonant Oscillator (Real)


- · Problem: Loss of energy due to nonideal L, C
- Requires energy input to maintain amplitude
- Synthesize "negative resistance"
- Cancel R_{LOSS} with -R_{NEG}

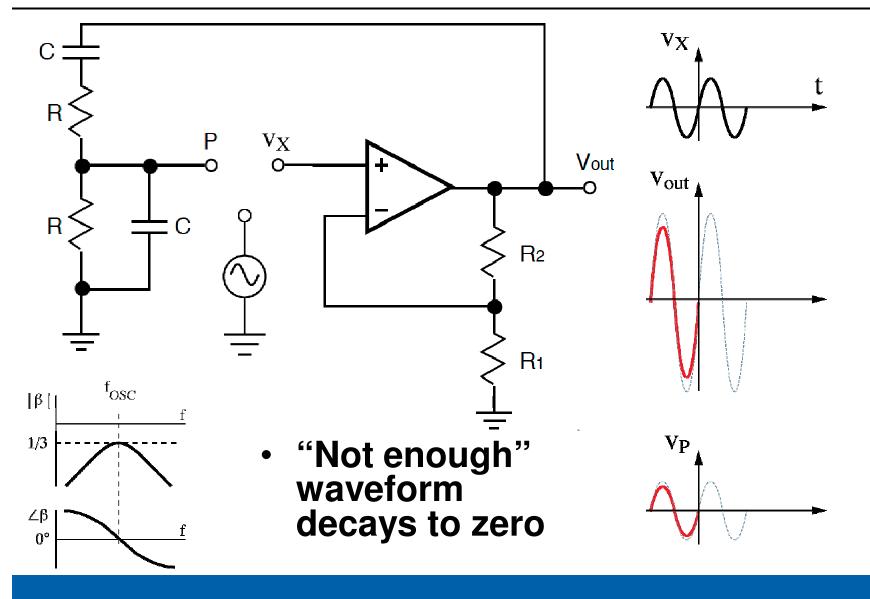
Negative Resistance

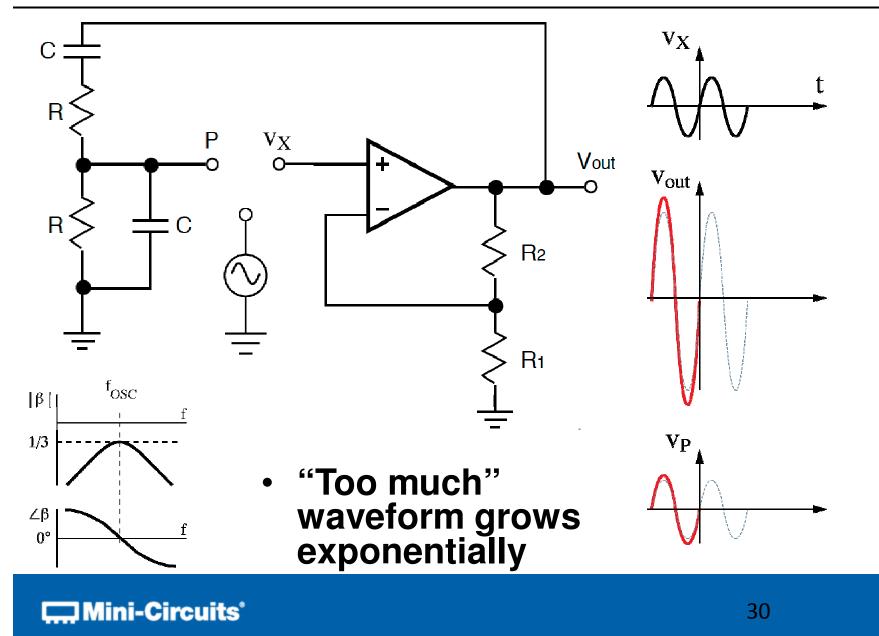


- Use active device to synthesize V-I characteristic that "looks like" – R_{NEG}
- Example: amplifier with positive feedback
- Feeds energy into resonator to counteract losses in R_{LOSS}

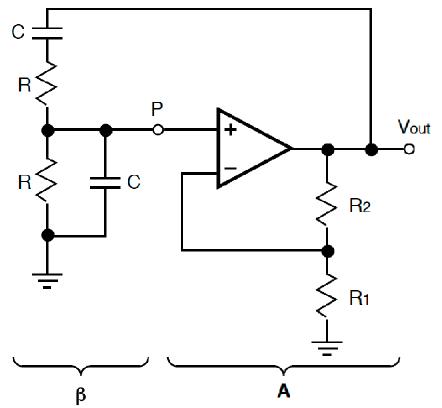
Feedback Oscillator: Wien Bridge



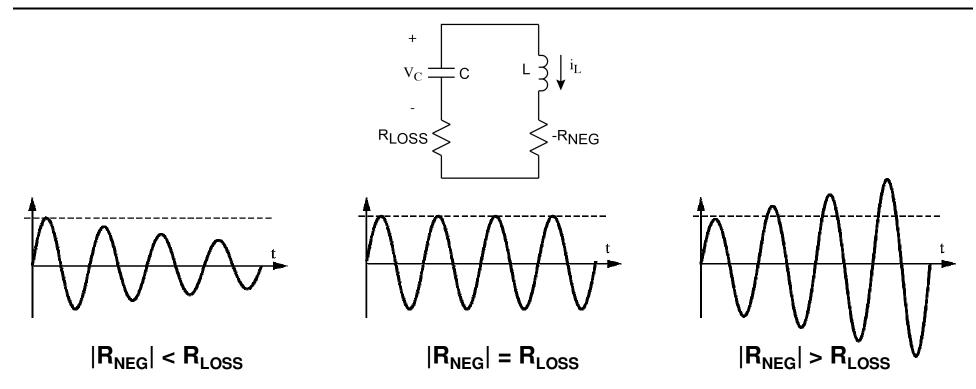

- Forward gain A=3
- Feedback network with transfer function β(f)
- At f_{OSC} , $|\beta|=1/3$ and $\angle \beta = 0$
- Thought experiment: break loop, inject sine wave, look at ∠β signal returned around feedback loop 0°


27

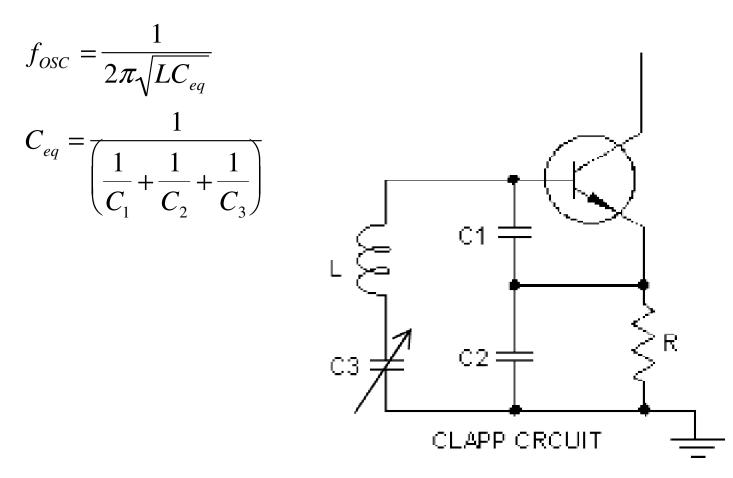
Αβ**=1**



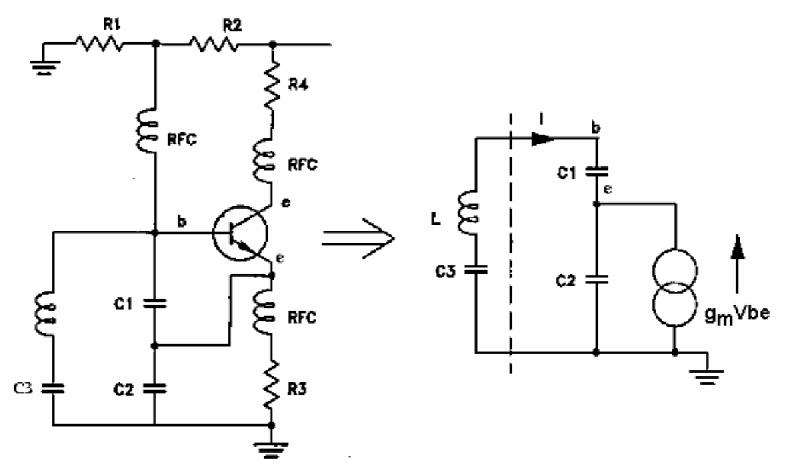
Αβ**=1.01**



Feedback oscillator

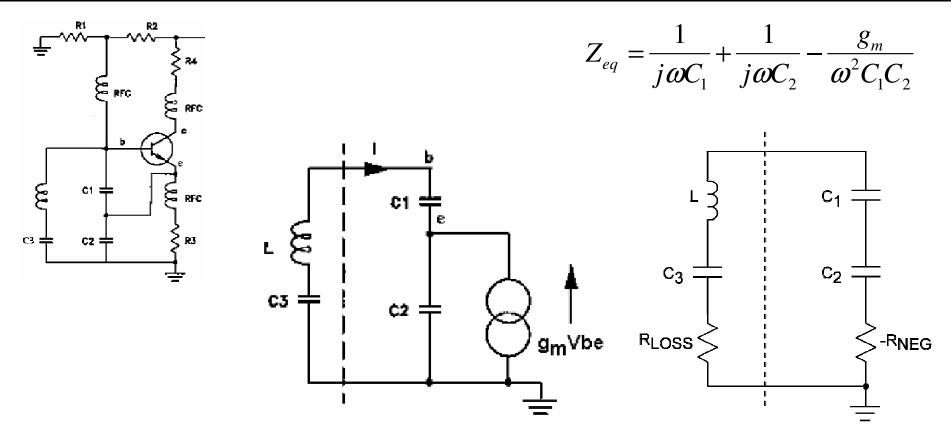

- Stable amplitude condition: $A\beta = 1 EXACTLY$
- Frequency determined by feedback network $A\beta=1$ condition
- Need supervisory circuit to monitor amplitude
- Startup: random noise; supervisory circuit begins with A β >1

Resonant Oscillator (Real)


- Stable amplitude condition: |R_{NEG}| = R_{LOSS} EXACTLY
- Frequency determined by LC network
- Startup: random noise; begin with |R_{NEG}| > R_{LOSS}
- Amplitude grows; soft clip gives average |R_{NEG}| = R_{LOSS}

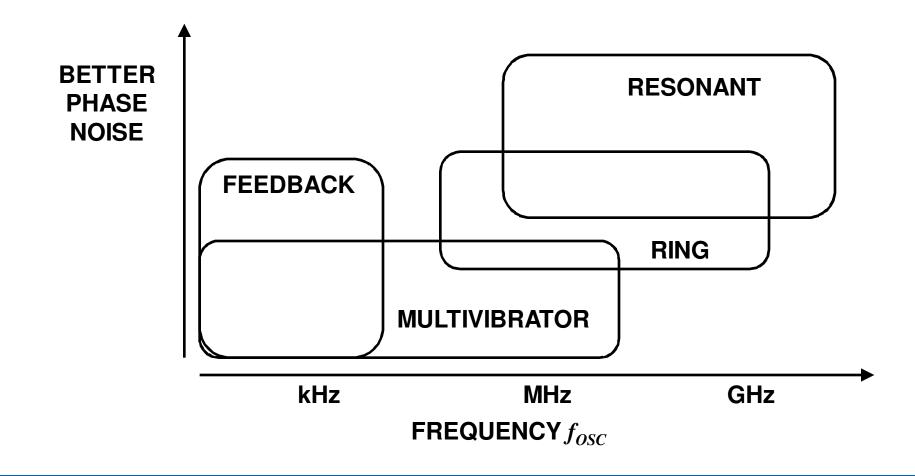
Clapp oscillator

• L, C1-C2-C3 set oscillation frequency f_{OSC}


Clapp oscillator

- Circuit configuration
- Equivalent circuit

MiniCircuits AN95-007, "Understanding Oscillator Concepts"


Clapp oscillator

- Frequency: Determined by L, C1, C2, C3
- Amplitude: Grows until limited by g_m soft clipping
- Startup: Choose C1, C2 feedback for | R_{NEG} | > R_{LOSS}

Oscillator Summary

• Typical performance of oscillator architectures:

Overview

- Functional Block Concept
- Oscillator Review
- Basic Performance Metrics
 - Frequency Range
 - Tuning Range
- Methods of Tuning
- Advanced Performance Metrics
- Conclusion

Basic Performance Metrics

VOLTAGE CONTROLLED OSCILLATORS 50 Ω 12.5 MHz to 3 GHz

MOS ROS Case CZ682 Case CK605, CK1113, CK829

PHASE NOISE

(dBc/Hz) SSB@

offset frequencies:

Тур. 10

kHz

kHz.

100

kHz MHz

PULLING PUSHING

(MHz/V)

Typ.

(MHz)

pk-pk @12 dBr

Typ.

Typ.

Max.

TUNING

SENSITIVITY

(MHz/V)

Typ.

C	ase BG419		
HARMONICS (dBc)	3dB MOD. BANDWIDTH (kHz)	POWER SUPPLY Voltage Current (V) (mA)	

Typ.

Nom. Max.

LINEAR TUNING Wideband

Max.

FREQUENCY

(MHz)

Min.

POWER

OUTPUT

(dBm)

Typ.

TUNE

VOLTAGE

(V)

Min. Max.

MODEL

PREFIX

JCOS-175LN	125	175	+3.7	1.017.01.014.00.020.00.020.0	-95	-118	-138 -158	0.08	0.05	3-5	-25 -20	2900	12.0	20
JCOS-820BLN	807	832	+3.0		-88	-112	-132 -151	0.4	0.4	6.0	-24 -20	2000	10.0	25
JCOS-820WLN	780	860	+9.0		-90	-112	-132 -150	4.5	0.3	8.0	-13 -8	2000	9.0	25
JCOS-1100LN	1079	1114	+8.5		-88	-110	-130 -150	7.5	0.5	4.5	-15 -10	2000	8.0	25
JTOS-25	12.5	25	+8.0	1.0 11.0	-95	-115	-135 -155	0.03	0.02	1.0-4.0	-26 -13	130	12.0	20
JTOS-50	25	47	+8.5	1.0 15.0	-88	-108	-127 -147	0.06	0.04	2.0-2.6	-19 -12	50	12.0	20
JTOS-75	37.5	75	+8.0	1.0 16.0	-89	-110	-130 -140	0.15	0.11	2.8-4.0	-27 -20	125	12.0	20
JTOS-100	50	100	+8.3	1.0 16.0	-83	-108	-128 -140	0.6	0.2	3.7-4.8	-35 -20	100	12.0	18
JTOS-150 JTOS-200 JTOS-300 JTOS-400	75 100 150 200	150 200 280 380	+9.5 +10.0 +9.0 +9.0	1.0 16.0 1.0 16.0 1.0 16.0 1.0 16.0 1.0 16.0	-82 -84 -82 -82	-106 -105 -102 -102	-127 -147 -124 -145 -122 -142 -122 -142	0.8 1.0 1.0 1.4	0.3 0.2 0.2 0.4	5.8-6.7 6-10 9-14 10.5-17.1	-23 -17 -25 -20 -28 -20 -25 -20	112 110 120 130	12.0 12.0 12.0 12.0	20 20 20 20
JTOS-535	300	525	+9.5	1.016.01.016.00.518.01.018.0	-75	-97	-117 -137	2.0	0.5	10-24	-28 -20	115	12.0	20
JTOS-765	485	765	+8.0		-75	-98	-118 -138	2.0	0.5	20-30	-30 38 20	100	12.0	20
JTOS-850VW	400	850	+6.0		-74	-96	-116 -136	6.0	1.5	15-80	-20 -20	185	5.0	20
JTOS-1000W	500	1000	+7.0		-73	-94	-114 -134	5.0	1.0	30-40	-26 -20	100	12.0	25

Basic Performance Metrics

Surface Mount Voltage Controlled Oscillator

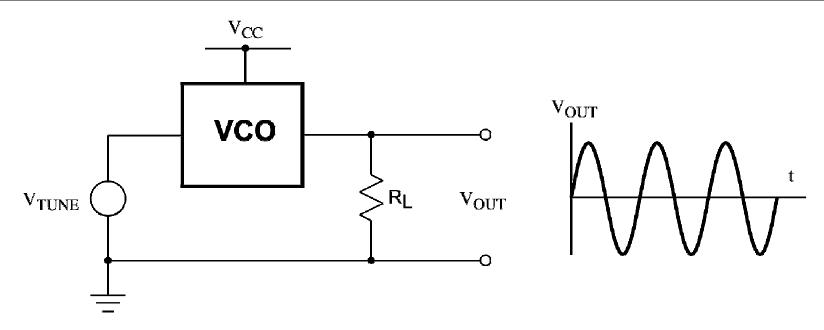
Wide Band 500 to 1000 MHz

Features

- wide frequency range, 500 to 1000 MHz typ.
- 3 dB modulation bandwidth 100 kHz typ.
- octave, linear tuning
- low phase noise, -134 dBc/Hz at 1 MHz offset, typ.
- excellent harmonic suppression, -26 dBc typ.
- aqueous washable

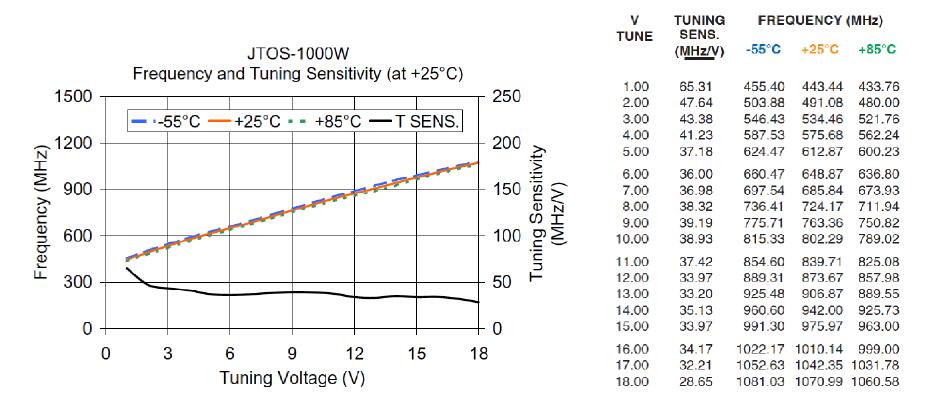
Applications

- test instruments-signal generators
- wideband frequency synthesizers
- agile communications systems
- catv distribution and set-top convertors
- cellular up and down converters
- digital cordless phones


CASE STYLE: BK377 PRICE: \$21.95 ea. QTY (5-49)

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

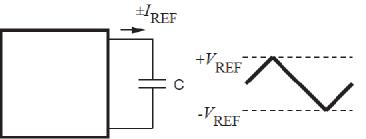
ſ	(MHz) C			TUNING VOLTAGE (V)	ssi	(dBo Batoffset	NOISE s/Hz) t frequenc	ies:	PULLING pk-pk @ 12 dBr (MHz)	pk (MHz/V) SENSITIVITY dBr (MHz/V)			ONICS Bc)	3 dB MODULATIO BANDWIDTH (MHz)		
	Min.	Max.	Тур.	Min. Max.	1 kHz	10 kHz	100 kHz	1 MHz	Тур.	Typ.	Тур.	Тур.	Max.	Тур.	Vcc (volts)	Current (mA) Max.
	500	1000	+7.0	1.0 18	-73	-94	-114	-134	5.0	1.0	30-40	-26	-20	0.1	12	25
)											


Electrical Specifications

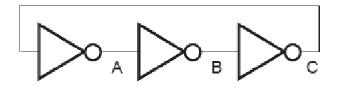
Basic Performance Metrics

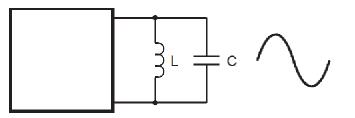
- Supply: DC operating power
- Output
 - Sine: output power dBm into 50Ω
 - Square: compatible logic
- Frequency Range
- Tuning Voltage Range

Frequency Range

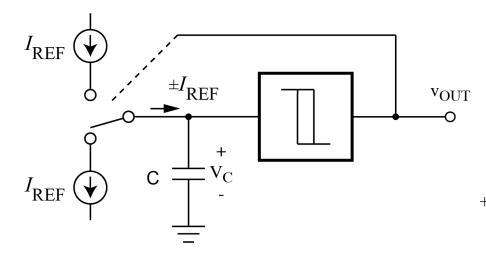

- Output frequency over tuning voltage range
- Caution: Temperature sensitivity

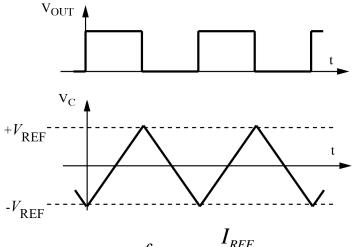
Overview


- Functional Block Concept
- Oscillator Review
- Basic Performance Metrics
- Methods of Tuning
- Advanced Performance Metrics
- Conclusion


VCOs / Methods of Tuning

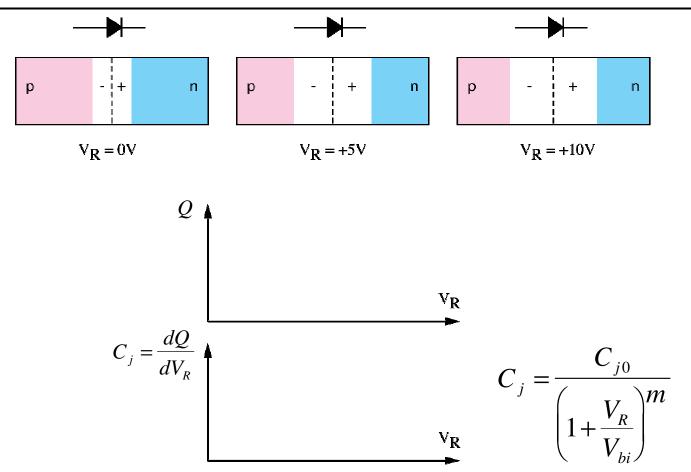
- Require electrical control of some parameter determining frequency:
- Multivibrator
 - Charge / discharge current


- Ring Oscillator – Gate delay
- Resonant
 - Voltage control of capacitance in LC (varactor)



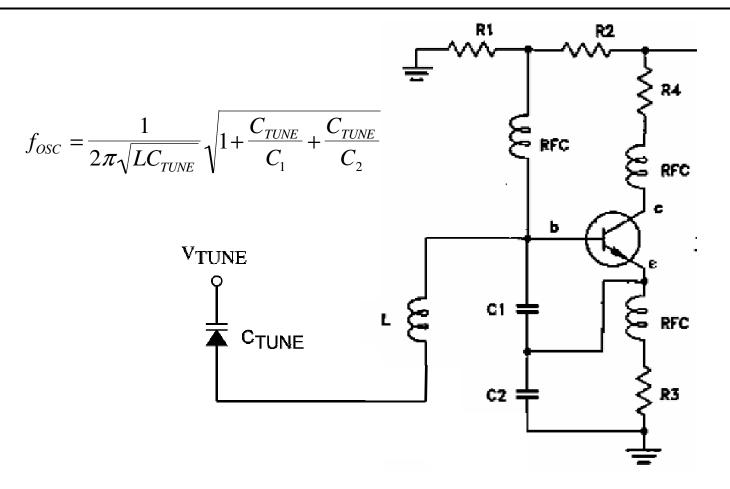
Example: Tuning Multivibrator

- Frequency: Controlled by I_{REF} , C, V_{REF} thresholds
- Use linear transconductance G_M to develop I_{REF} from V_{TUNE}


$$f_{OSC} = \frac{I_{REF}}{4CV_{REF}}$$

$$I_{REF} = G_M V_{TUNE}$$

 $f_{OSC} = \left(\frac{G_M}{4CV_{REF}}\right) V_{TUNE}$


- + Very linear $V_{TUNE} f_{OSC}$ characteristic
- But: poor phase noise; f_{OSC} limited to MHz range

Tuning LC Resonator: Varactor

- Q-V characteristic of pn junction
- Use reverse bias diode for C in resonator

Example: Clapp oscillator

- Tuning range f_{MIN} , f_{MAX} set by C_{TUNE} maximum, minimum
- Want C_1 , $C_2 > C_{TUNE}$ for wider tuning range

Overview

- Functional Block Concept
- Oscillator Review
- Basic Performance Metrics
- Methods of Tuning
- Advanced Performance Metrics
 - Tuning Sensitivity
 - Phase Noise
 - Supply Pushing
 - Load Pulling
- Conclusion

Advanced Performance Metrics

VOLTAGE CONTROLLED OSCILLATORS 50 Ω 12.5 MHz to 3 GHz

						MOS Case CZ68	32 Case	- CK60	ROS 5, CK1113, CK	829	JTOS Case BK377			JCOS Case BG419	ŀ	
MODEL PREFIX	FREQUENCY (MHz) Min. Max.		POWER OUTPUT (dBm)	TUNE VOLTAG (V) Min. Ma	1	PHASE NOISE (dBc/Hz) SSB@ offset frequencies: Typ. 1 10 100 1 kHz kHz kHz MH:		: 1 MHz	PULLING (MHz) pk-pk @12 dBr Typ.	(MHz) (MHz/V) pk-pk @12 dBr		HARMONICS (dBc) Typ. Max.		3dB MOD. BANDWIDTH (kHz) Typ.	POW SUP Voltage (V) Nom.	PLY
LINEA	R TU	band	C													
JCOS-175LN JCOS-820BLN JCOS-820WLN JCOS-1100LN	125 807 780 1079	175 832 860 1114	+3.7 +3.0 +9.0 +8.5	1.0 17. 1.0 14. 0.0 20. 0.0 20.) - <mark>8</mark> 8	-112 -112	-132 - -132 -	-158 -151 -150 -150	0.08 0.4 4.5 7.5	0.05 0.4 0.3 0.5	3-5 6.0 8.0 4.5	-25 -24 -13 -15	-20 -20 -8 -10	2900 2000 2000 2000	12.0 10.0 9.0 8.0	20 25 25 25
JTOS-25 JTOS-50 JTOS-75 JTOS-100	12.5 25 37.5 50	25 47 75 100	+8.0 +8.5 +8.0 +8.3	1.0 11. 1.0 15. 1.0 16. 1.0 16.) -88) -89	3 -108 -110	-127 - -130 -	-155 -147 -140 -140	0.03 0.06 0.15 0.6	0.02 0.04 0.11 0.2	1.0-4.0 2.0-2.6 2.8-4.0 3.7-4.8	-26 -19 -27 -35	-13 -12 -20 -20	130 50 125 100	12.0 12.0 12.0 12.0	20 20 20 18
JTOS-150 JTOS-200 JTOS-300 JTOS-400	75 100 150 200	150 200 280 380	+9.5 +10.0 +9.0 +9.0	1.0 16. 1.0 16. 1.0 16. 1.0 16.) -84) -82	-102	-124 - -122 -	-147 -145 -142 -142	0.8 1.0 1.0 1.4	0.3 0.2 0.2 0.4	5.8-6.7 6-10 9-14 10.5-17.1	-23 -25 -28 -25	-17 -20 -20 -20	112 110 120 130	12.0 12.0 12.0 12.0	20 20 20 20
JTOS-535 JTOS-765 JTOS-850VW JTOS-1000W	300 485 400 500	525 765 850 1000	+9.5 +8.0 +6.0 +7.0	1.0 16. 1.0 16. 0.5 18. 1.0 18.) -7() -74	5 -98 -96	-118 - -116 -	-137 -138 -136 -134	2.0 2.0 6.0 5.0	0.5 0.5 1.5 1.0	10-24 20-30 15-80 30-40	-28 -30 -20 -26	-20 -20 -20 -20	115 100 185 100	12.0 12.0 5.0 12.0	20 20 20 25

Mini-Circuits*

WITH LEADS

Tuning Sensitivity

Surface Mount Voltage Controlled Oscillator

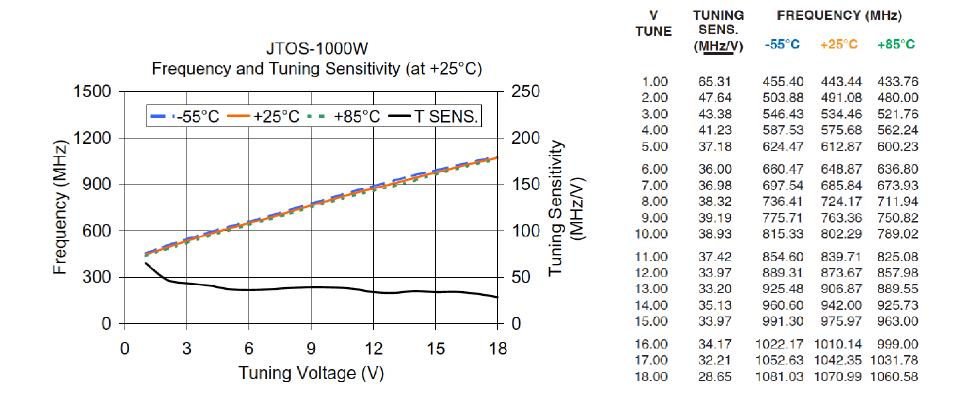
Wide Band 500 to 1000 MHz

Features

- wide frequency range, 500 to 1000 MHz typ.
- 3 dB modulation bandwidth 100 kHz typ.
- octave, linear tuning
- low phase noise, -134 dBc/Hz at 1 MHz offset, typ.
- excellent harmonic suppression, -26 dBc typ.
- aqueous washable

Applications

- test instruments-signal generators
- wideband frequency synthesizers
- agile communications systems
- catv distribution and set-top convertors
- cellular up and down converters
- digital cordless phones


CASE STYLE: BK377 PRICE: \$21.95 ea. QTY (5-49)

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

				NING			NOISE		PULLING	PUSHIN		TUNING		MONICS		D	-	
			OUTPUT (dBm)	VOLTAGE (V)			(dB Batoffse	cies:	pk-pk @ 12 dBr	(MHz/V		SENSITIVITY (MHz/V)	(dBc)	MODULATION BANDWIDTH	OPERATING POWER		
						Тур.			(MHz)						(MHz)			
Mi	lin.	Max.	Тур.	Min.	Max.	1 kHz	10 kHz	100 kHz	1 MHz	Тур.	Тур.		Typ.	Тур.	Max.	Тур.	Vcc (volts)	Current (mA) Max.
50	00	1000	+7.0	1.0	18	-73	-94	-114	-134	5.0	1.0	Γ	30-40	-26	-20	0.1	12	25

Electrical Specifications

Frequency Range

Change in slope [MHz/V] over tuning voltage range

Tuning Sensitivity

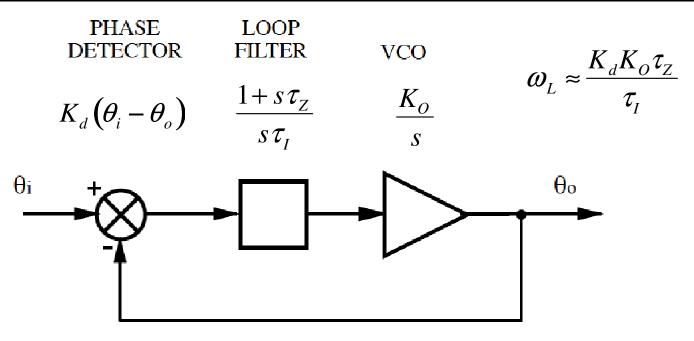
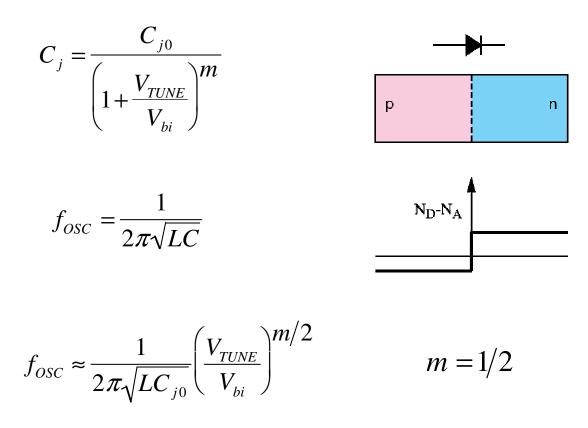
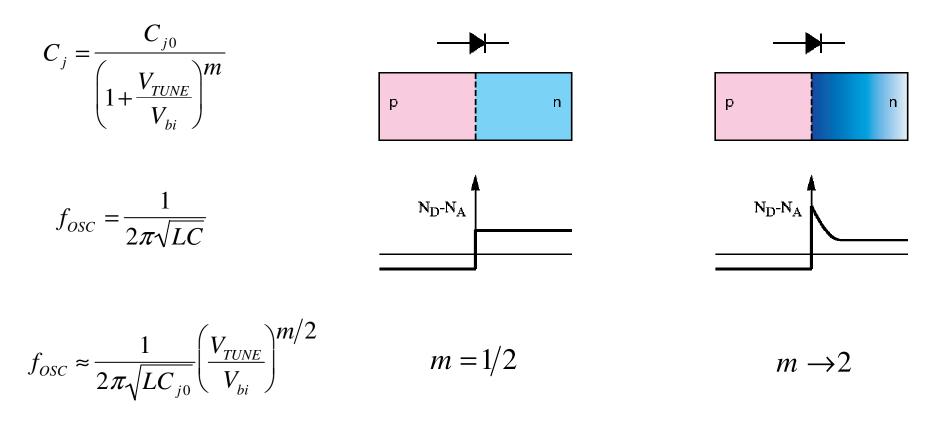



Fig. 3.5. Phaselock loop as a control system.


- Why do you care?
 - PLL: Tuning sensitivity K_o affects control parameters
 - -Loop bandwidth ω_L (may not be critical)
 - Stability (critical!)

Varactor Tuning

- Disadvantages of abrupt junction C-V characteristic (m=1/2)
 - Smaller tuning range
 - Inherently nonlinear $V_{TUNE} f_{OSC}$ characteristic

Hyperabrupt Junction Varactor

- Hyperabrupt junction C-V characteristic (m ≈ 2)
 - + Larger tuning range; more linear $V_{TUNE} f_{OSC}$
 - Disadvantage: Lower Q in resonator

Phase Noise

Surface Mount Voltage Controlled Oscillator

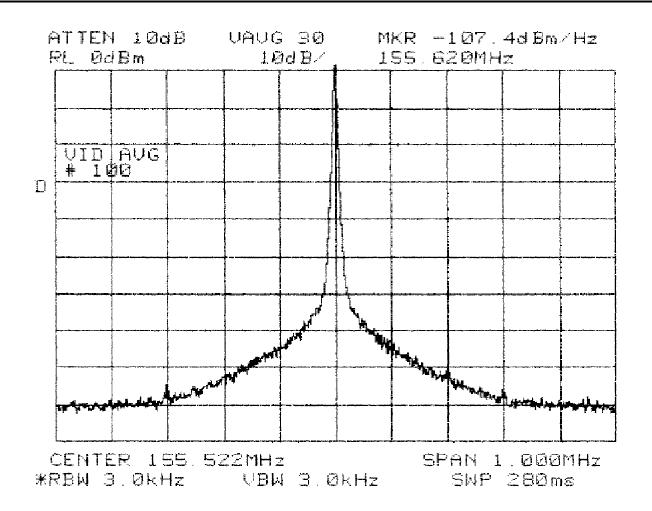
Wide Band 500 to 1000 MHz

Features

- wide frequency range, 500 to 1000 MHz typ.
- 3 dB modulation bandwidth 100 kHz typ.
- octave, linear tuning
- low phase noise, -134 dBc/Hz at 1 MHz offset, typ.
- excellent harmonic suppression, -26 dBc typ.
- aqueous washable

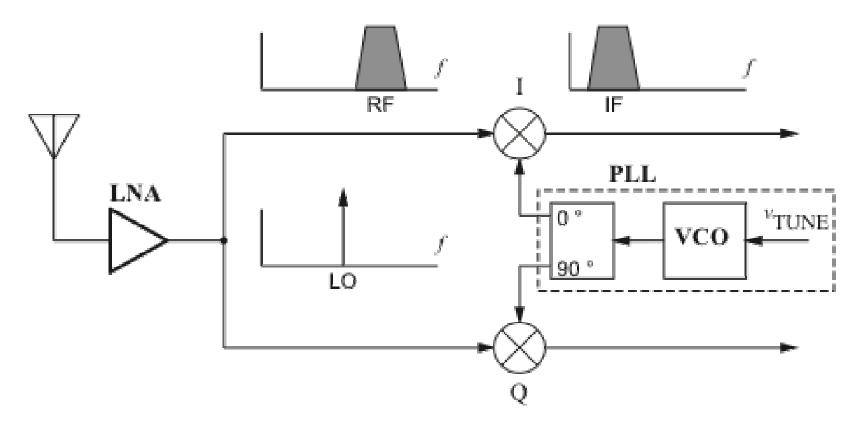
Applications

- test instruments-signal generators
- wideband frequency synthesizers
- agile communications systems
- catv distribution and set-top convertors
- cellular up and down converters
- digital cordless phones

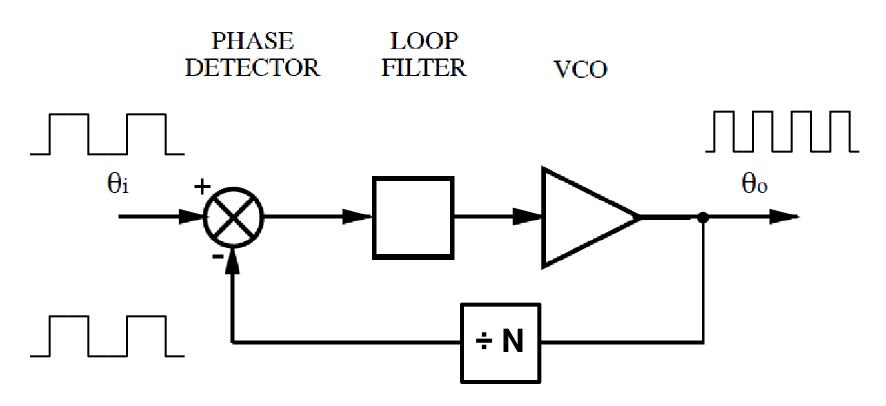

CASE STYLE: BK377 PRICE: \$21.95 ea. QTY (5-49)

+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

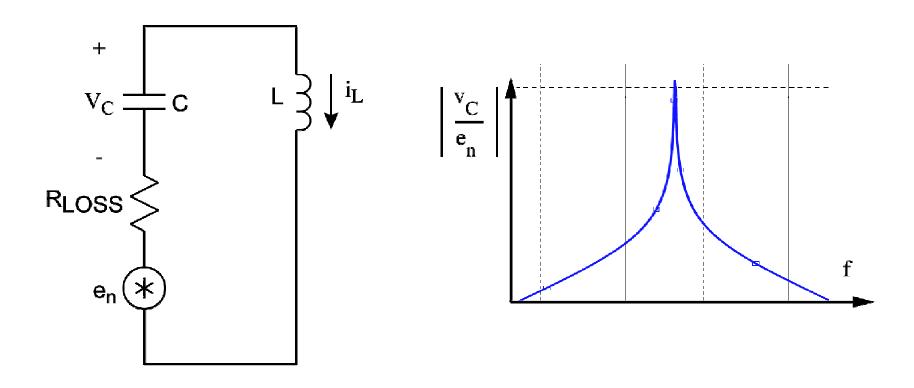
									a obeer	noution	9					
		POWER OUTPUT (dBm)				(dBo Batoffset	E NOISE c/Hz) t frequenc yp.	cies:	PULLING pk-pk ▣ 12 dBr (MHz)	PUSHING (MHz/V)	TUNING SENSITIVITY (MHz/V)	HARMONICS (dBc)		3 dB MODULATION BANDWIDTH (MHz)	DC OPERATING POWER	
Min.	Max.	Typ.	Min.	Ma:	1 kHz	10 kHz	100 kHz	1 MHz	Typ.	Тур.	<mark>Ту</mark> р.	Тур.	Max.	Тур.	Vcc (volts)	Current (mA) Max.
500	1000	+7.0	1.0	18	-73	-94	-114	-134	5.0	1.0	30-40	-26	-20	0.1	12	25


Electrical Specifications

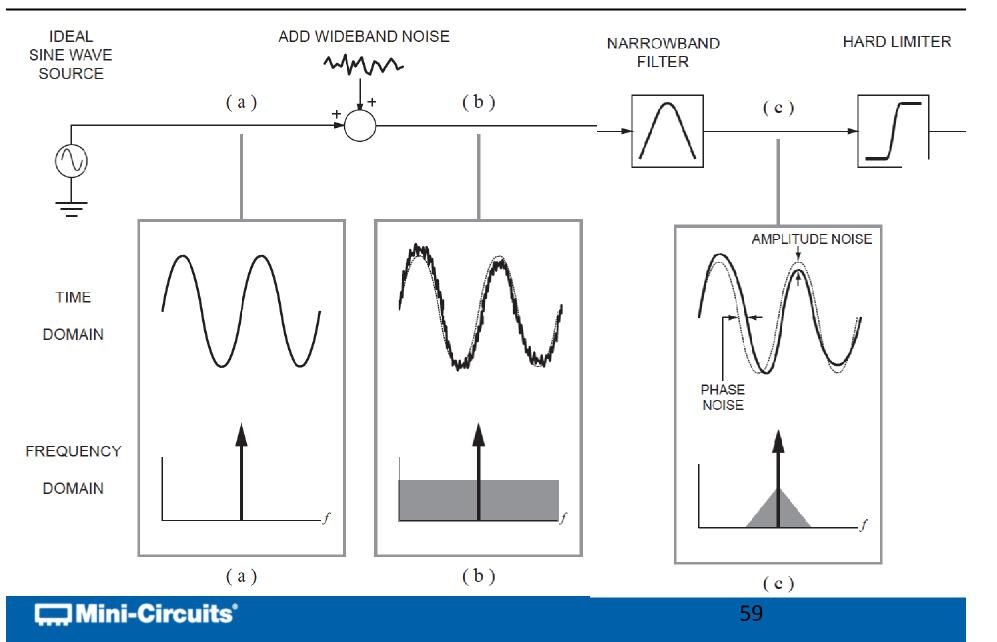
Phase Noise


Power spectrum "close in" to carrier

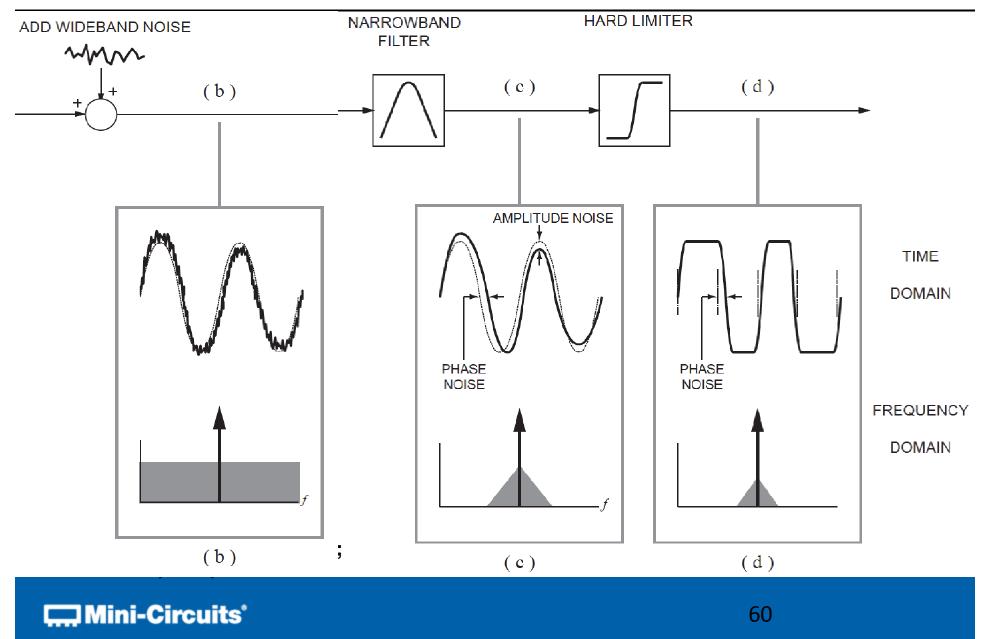
Phase Noise: RF System


- Mixers convolve LO spectrum with RF
- Phase noise "blurs" IF spectrum

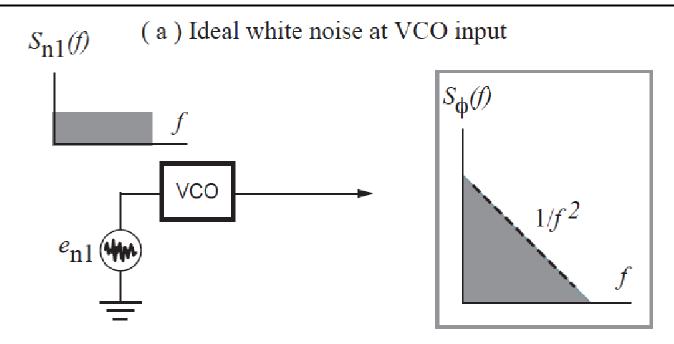
Phase Noise: Digital System


- Time domain jitter on synthesized output clock
- Decreases timing margin for system using clock

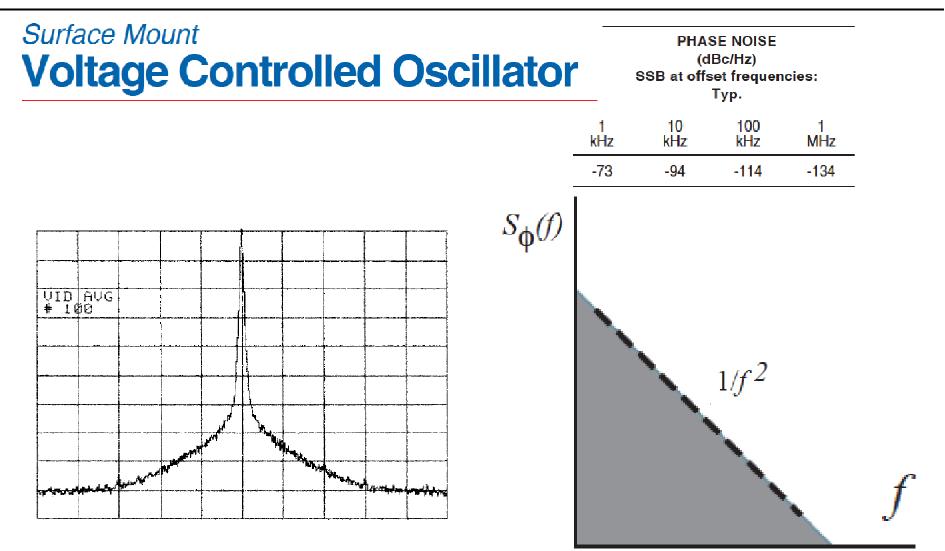
Shape of Phase Noise Spectrum

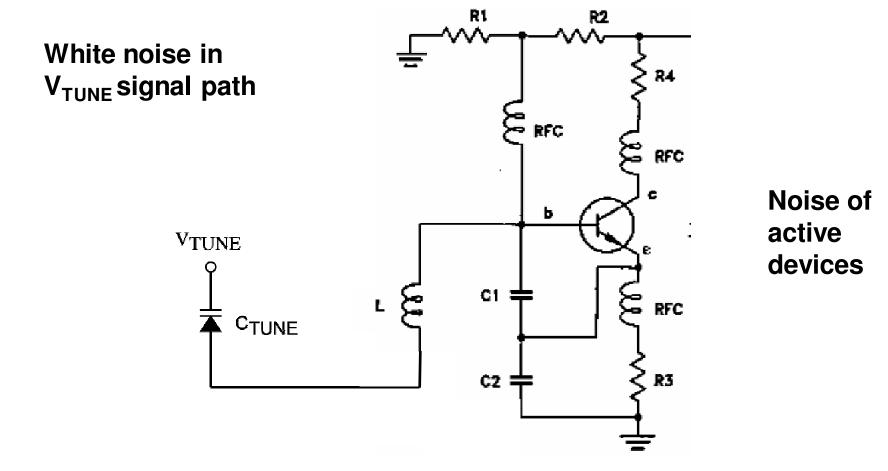


- LC filters noise into narrow band near fundamental
- High Q resonator preferred to minimize noise

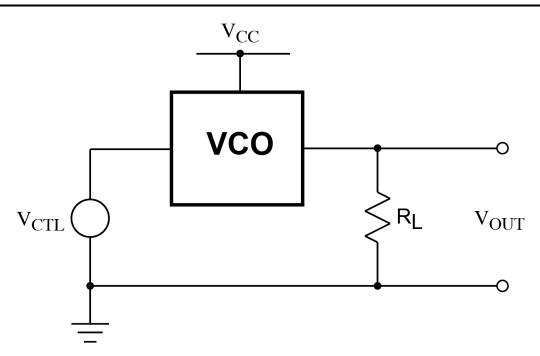

Phase Noise: Intuitive view

Phase Noise: Intuitive view

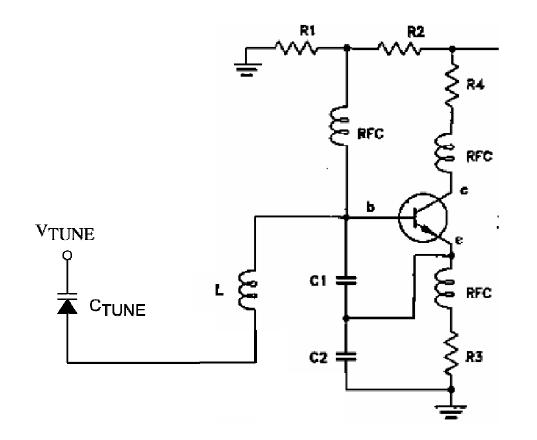

Phase Noise Description


- Symmetric; look at single sided representation
- Normalized to carrier: dBc
- At different offset frequencies from carrier
- White frequency noise: phase noise with -20dB/decade slope
- Other noise processes change slope; 1/f noise gives -30dB/decade

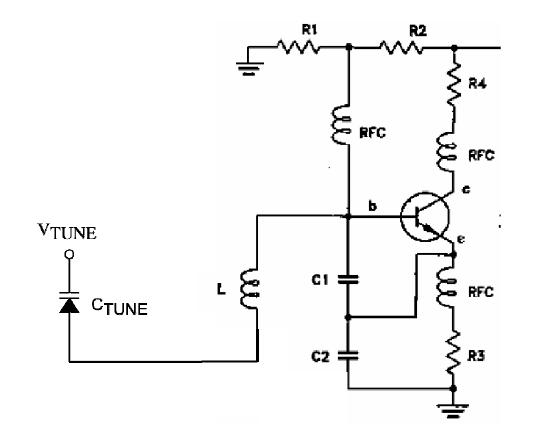
Phase Noise Specification



Sources of Phase Noise


Thermal noise: Losses in resonator, series R of varactor

Supply / Load Sensitivity


- Ideally tuning voltage is the only way to change output frequency
 - In reality other factors involved
 - Mechanism depends on specifics of circuit
- Power supply dependence: Supply Pushing
- Impedance mismatch at output: Load Pulling

Supply Pushing

- Change in f_{OSC} due to change in supply voltage
- Clapp oscillator: supply affects transistor bias condition, internal signal amplitudes

Load Pulling

- Change in f_{OSC} due to impedance mismatch at output
- Clapp oscillator; reflection couples through transistor parasitic to LC resonator

Overview

- Functional Block Concept
- Oscillator Review
- Basic Performance Metrics
- Methods of Tuning
- Advanced Performance Metrics
- Conclusion

Summary: VCO Fundamentals

- First order behavior
 - Tuning voltage V_{TUNE} controls output frequency

– Specify by min/max range of f_{OSC} , V_{TUNE}

- Performance limitations
 - Linearity of tuning characteristic
 - Spectral purity: phase noise, harmonics
 - Supply, load dependence
- Different VCO architectures trade frequency range, tuning linearity, phase noise performance

Questions?

Thank you to our presenter John McNeill and our sponsor Mini-Circuits

