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Functional Block Concept
• Input control voltage VTUNE

determines frequency of output waveform
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Applications: RF System

• Downconvert band of interest to IF

• VCO: Electrically tunable selection
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Applications: Digital System

• Clock synthesis (frequency multiplication)

÷ N
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J. A. McNeill and D. R. Ricketts, “The Designer’s Guide to Jitter in Ring Oscillators.”  Springer, 2009 
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Oscillator Review

• Types of Oscillators

– Multivibrator

– Ring

– Resonant

– Feedback

• Basic Factors in Oscillator Design

– Frequency

– Amplitude / Output Power

– Startup
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Multivibrator

• Conceptual multivibrator oscillator
– Also called astable or relaxation oscillator

• One energy storage element
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Example: Multivibrator 

• Frequency: Controlled by charging current IREF , 

C, VREF thresholds

• Amplitude: Controlled by thresholds, logic swing

• Startup: Guaranteed; no stable state
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Ring Oscillator

• Frequency: Controlled by gate delay
• Amplitude: Controlled by logic swing
• Startup: Guaranteed; no stable state
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Resonant Oscillator

• Concept: Natural oscillation frequency 
of resonance

• Energy flows back and forth between 
two storage modes
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Resonant Oscillator (Ideal)

• Example: swing (ideal)

• Energy storage modes: potential, kinetic

• Frequency: Controlled by length of pendulum

• Amplitude: Controlled by initial position

• Startup: Needs initial condition energy input
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Resonant Oscillator (Real)

• Problem: Loss of energy due to friction
• Turns “organized” energy (potential, kinetic) into 

“disorganized” thermal energy (frictional heating)
• Amplitude decays toward zero
• Requires energy input to maintain amplitude
• Amplitude controlled by “supervision”
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LC Resonant Oscillator (Ideal)

• Energy storage modes: 

Magnetic field (L current), Electric field (C voltage)

• Frequency: Controlled by LC

• Amplitude: Controlled by initial condition

• Startup: Needs initial energy input (initial condition)
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LC Resonant Oscillator (Real)

• Problem: Loss of energy due to nonideal L, C  

– Model as resistor RLOSS; Q of resonator

• E, M field energy lost to resistor heating

• Amplitude decays toward zero
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LC Resonant Oscillator (Real)

• Problem: Loss of energy due to nonideal L, C

• Requires energy input to maintain amplitude

• Synthesize “negative resistance”

• Cancel RLOSS with -RNEG
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Negative Resistance

• Use active device to synthesize V-I characteristic that 

“looks like” –RNEG

• Example: amplifier with positive feedback

• Feeds energy into resonator to counteract losses in RLOSS
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Feedback Oscillator: Wien Bridge 

• Forward gain A=3

• Feedback network with transfer 

function ββββ(f)

• At fOSC, |ββββ|=1/3 and ∠ ββββ =0

• Thought experiment: 
break loop, inject sine wave, look at 
signal returned around feedback loop
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Aββββ=1

• “Just right”
waveform is 
self sustaining
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Aββββ=0.99

• “Not enough”
waveform 
decays to zero
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Aββββ=1.01

• “Too much”
waveform grows
exponentially
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Feedback oscillator

• Stable amplitude condition: Aββββ=1 EXACTLY
• Frequency determined by feedback network Aββββ=1 condition
• Need supervisory circuit to monitor amplitude
• Startup: random noise; supervisory circuit begins with Aββββ>1
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Resonant Oscillator (Real)

• Stable amplitude condition: |RNEG| = RLOSS EXACTLY

• Frequency determined by LC network

• Startup: random noise; begin with |RNEG| > RLOSS

• Amplitude grows; soft clip gives average |RNEG| = RLOSS

32

|RNEG| < RLOSS |RNEG| = RLOSS |RNEG| > RLOSS



Clapp oscillator 

• L, C1-C2-C3 set oscillation frequency fOSC
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Clapp oscillator 

• Circuit configuration • Equivalent circuit

MiniCircuitsAN95-007, “Understanding Oscillator Concepts” 



Clapp oscillator 

• Frequency: Determined by L, C1, C2, C3

• Amplitude: Grows until limited by gm soft clipping

• Startup: Choose C1, C2 feedback for | RNEG | > RLOSS

Z
eq

=
1

jωC
1

+
1

jωC
2

−
g

m

ω 2
C

1
C

2



Oscillator Summary

• Typical performance of oscillator architectures:
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Basic Performance Metrics

• Supply: DC operating power

• Output

– Sine: output power dBm into 50Ω

– Square: compatible logic

• Frequency Range

• Tuning Voltage Range
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Frequency Range

• Output frequency over tuning voltage range
• Caution: Temperature sensitivity
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VCOs / Methods of Tuning
• Require electrical control of some parameter 

determining frequency:

• Multivibrator
– Charge / discharge 

current

• Ring Oscillator
– Gate delay

• Resonant
– Voltage control of 

capacitance in LC 
(varactor)
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Example: Tuning Multivibrator

• Frequency: Controlled by 
IREF , C, VREF thresholds

• Use linear transconductance
GM to develop IREF  from VTUNE

+ Very linear VTUNE – fOSC characteristic

- But: poor phase noise; fOSC limited to MHz range
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Tuning LC Resonator: Varactor

• Q-V characteristic of pn junction

• Use reverse bias diode for C in resonator
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Example: Clapp oscillator

• Tuning range fMIN, fMAX set by CTUNE maximum, minimum

• Want C1, C2 > CTUNE for wider tuning range
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Advanced Performance Metrics

• Tuning Sensitivity (V-f linearity)

• Phase Noise

• Supply/Load Sensitivity
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• from data sheet showing specs

Tuning Sensitivity
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Frequency Range

• Change in slope [MHz/V] over tuning voltage range
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Tuning Sensitivity

• Why do you care?  

– PLL: Tuning sensitivity KO affects control parameters

– Loop bandwidth ωωωωL (may not be critical)

– Stability (critical!)
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Varactor Tuning

• Disadvantages of abrupt junction C-V characteristic (m=1/2)

– Smaller tuning range
– Inherently nonlinear VTUNE – fOSC characteristic
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Hyperabrupt Junction Varactor

• Hyperabrupt junction C-V characteristic (m ≈ 2)
+ Larger tuning range; more linear VTUNE – fOSC

- Disadvantage: Lower Q in resonator
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Phase Noise

• Power spectrum “close in” to carrier
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Phase Noise: RF System

• Mixers convolve LO spectrum with RF

• Phase noise “blurs” IF spectrum
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Phase Noise: Digital System

• Time domain jitter on synthesized output clock
• Decreases timing margin for system using clock

÷ N
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Shape of Phase Noise Spectrum

• LC filters noise into narrow band near fundamental
• High Q resonator preferred to minimize noise
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Phase Noise: Intuitive view

• Sine wave + white noise; Filter; 
limit; Result: 
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Phase Noise Description

• Symmetric; look at single sided representation
• Normalized to carrier: dBc
• At different offset frequencies from carrier
• White frequency noise: phase noise with -20dB/decade slope
• Other noise processes change slope; 1/f noise gives 

-30dB/decade
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Phase Noise Specification

• Symmetric; look at single sided
• Normalized to carrier: dBc
• At different offset frequencies from carrier
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Sources of Phase Noise

Noise of 
active 
devices 
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Thermal noise: Losses in resonator, series R of varactor

White noise in 
VTUNE signal path



Supply / Load Sensitivity

• Ideally tuning voltage is the only way to change output 
frequency
– In reality other factors involved
– Mechanism depends on specifics of circuit

• Power supply dependence: Supply Pushing
• Impedance mismatch at output: Load Pulling
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Supply Pushing

• Change in fOSC due to change in supply voltage

• Clapp oscillator: supply affects transistor bias condition, 
internal signal amplitudes
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Load Pulling

• Change in fOSC due to impedance mismatch at output

• Clapp oscillator; reflection couples through transistor 
parasitic to LC resonator

66



Overview

• Functional Block Concept

• Oscillator Review

• Basic Performance Metrics

• Methods of Tuning

• Advanced Performance Metrics

• Conclusion

67



Summary: VCO Fundamentals

• First order behavior

– Tuning voltage VTUNE controls output frequency

– Specify by min/max range of  fOSC, VTUNE

• Performance limitations

– Linearity of tuning characteristic

– Spectral purity: phase noise, harmonics

– Supply, load dependence

• Different VCO architectures trade frequency range, 
tuning linearity, phase noise performance
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Questions?
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Thank you to our presenter John McNeill and our 
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