
M5065 Extended Specifications

Clarke & Severn Electronics Ph +612 9482 1944 Email sales@clarke.com.au www.clarke.com.au webshop www. cseonline.com.au

- Frequency range: 300 kHz 6.5 GHz
- Wide output power adjustment range: -55 dBm to +5 dBm
- Dynamic range: 130 dB (10 Hz IF bandwidth) typ.
- Measurement time per point: 70 µs per point, min typ.
- Up to 16 logical channels with 16 traces each max
- Automation programming in LabView, Python, MATLAB,
 .NET, etc.
- Models available in **50 Ohm**
- Up to 200,001 measurement points
- Multiple **precision calibration** methods and automatic calibration

Singapore: +65.6323.6546 Latin America: +1.954.706.5920

EXTEND YOUR REACH™

To the total

Specifications¹

Measurement Range

Impedance	50 Ohm
Test port connector	type N, female
Number of test ports	2
Direct access	-
Frequency extender compatible	-
Frequency range	300 kHz to 6.5 GHz
Full frequency accuracy	±5·10 ⁻⁶
Frequency resolution	1 Hz
Number of measurement points	2 to 200,001
Measurement bandwidths (with 1/1.5/2/3/5/7 steps)	1 Hz to 100 kHz
Dynamic range ²	125 dB (130 dB typ.)

Measurement Accuracy³

Accuracy of transmission measurements⁴	Magnitude / Phase
0 dB to +10 dB	±0.2 dB / ±2°
-45 dB to 0 dB	±0.1 dB / ±1°
-65 dB to -45 dB	±0.2 dB / ±2°
-85 dB to -65 dB	±1.0 dB / ±6°
Accuracy of reflection measurements ⁵	Magnitude / Phase
-15 dB to 0 dB	±0.4 dB / ±3°
-25 dB to -15 dB	±1.0 dB / ±6°
-35 dB to -25 dB	±3.0 dB / ±20°
Trace noise magnitude (IF bandwidth 3 kHz)	0.002 dB rms
Temperature dependence	0.02 dB/°C

Effective System Data

300 kHz to 6.5 GHz	
Directivity	46 dB
Source match	40 dB
Load match	46 dB
Reflection tracking	±0.10 dB
Transmission tracking	±0.08 dB

Uncorrected System Performance

300 kHz to 6.5 GHz	
Directivity	15 dB
Source match	15 dB
Load match	15 dB

Specifications¹

Test Port Output

Power range	-55 dBm to +5 dBm
Power accuracy	±1.5 dB
Power resolution	0.05 dB
Harmonic distortion ⁶	-20 dBc
Non-harmonic spurious ⁶	-20 dBc

Test Port Input

Noise floor	-130 dBm/Hz
Damage level	+23 dBm
Damage DC voltage	35 V

Measurement Speed

Time per point	70 µs typ.
Port switchover time	1 ms

Frequency Reference Input

Port	10 MHz Ref In/Out
External reference frequency	10 MHz
Input level	-1 dBm to 5 dBm
Input impedance	50 Ohm
Connector type	BNC, female

Frequency Reference Output

Port	10 MHz Ref In/Out
Internal reference frequency	10 MHz
Output reference signal level at 50 Ohm impedance	1 dBm to 5 dBm
Connector type	BNC, female

Trigger Input

Port	Ext Trig In
Input level	
Low threshold voltage	0.5 V
High threshold voltage	2.7 V
Input level range	0 V to + 5 V
Pulse width	≥2 µs
Polarity	positive or negative
Input impedance	≥10 kOhm
Connector type	BNC, female

Specifications¹

Trigger Output

Port	Ext Trig Out
Maximum output current	20 mA
Output level	
Low level voltage	0.0 V
High level voltage	3.5 V
Polarity	positive or negative
Connector type	BNC, female

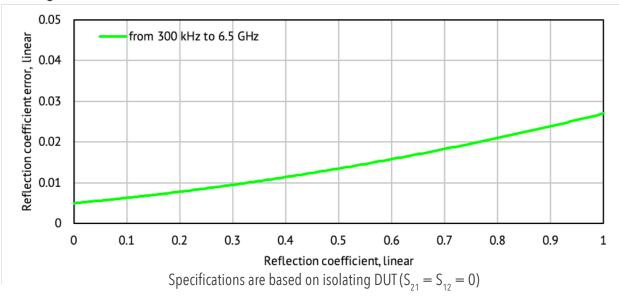
System & Power

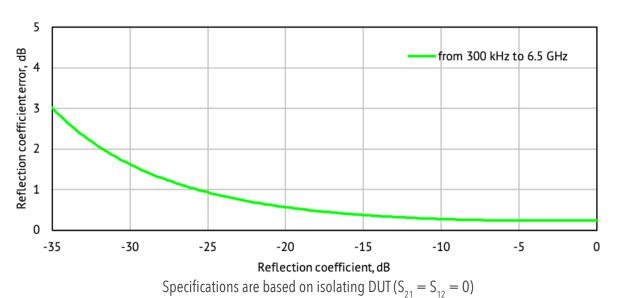
Operating system	Windows 7 and above
CPU frequency	1.0 GHz
RAM	512 MB
Interface	USB 2.0
Connector type	USB B
Power supply	110-240 V, 50/60 Hz
Power consumption	14 W
Input power	9 V DC to 15 V DC
Input power consumption DC	12 W

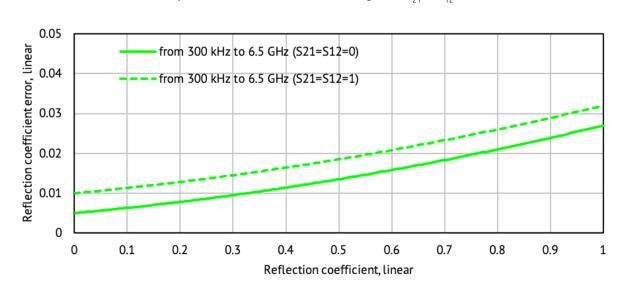
Calibration

Recommended factory adjustment interval	3 years
---	---------

Dimensions

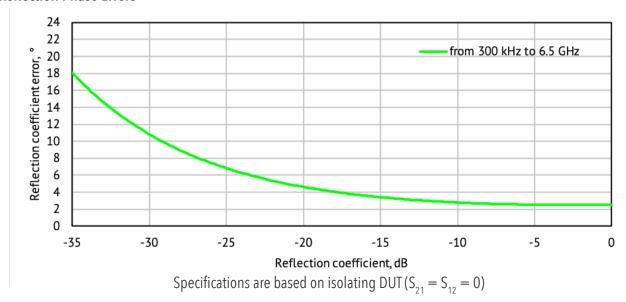

Length	297 mm
Width	160 mm
Height	44 mm
Weight	1.7 kg (60 oz)

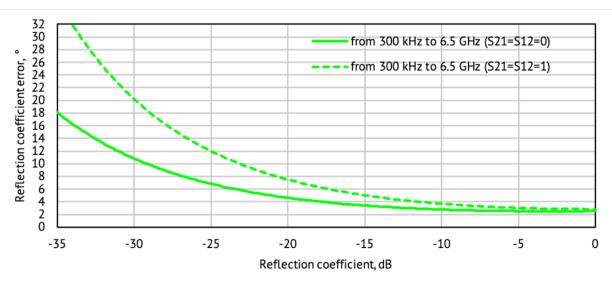

Environmental Specifications

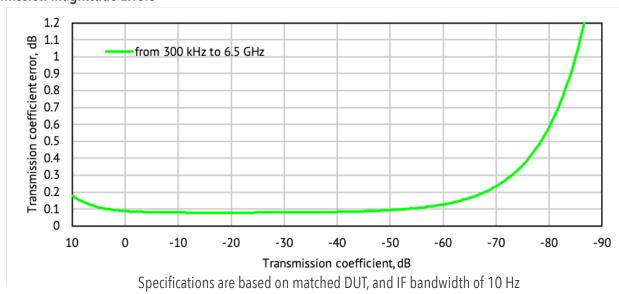

Operating temperature	+5 °C to +40 °C (41 °F to 104 °F)
Storage temperature	-50 °C to +70 °C (-58 °F to 158 °F)
Humidity	90 % at 25 °C (77 °F)
Atmospheric pressure	70.0 kPa to 106.7 kPa

Reflection Accuracy Plots

Reflection Magnitude Errors



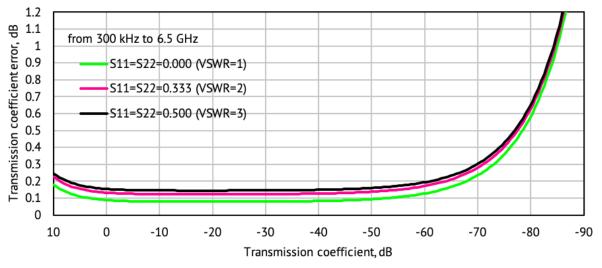



Reflection/Transmission Accuracy Plots

Reflection Phase Errors

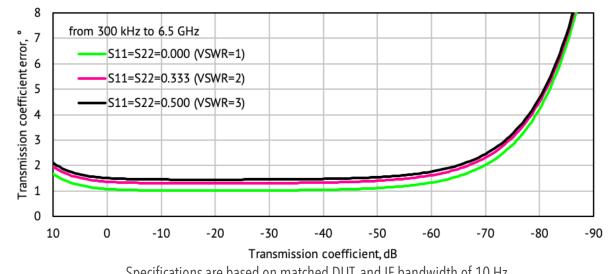


Transmission Magnitude Errors

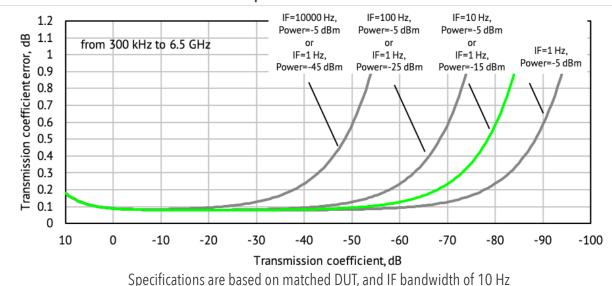

Transmission Accuracy Plots

Transmission Magnitude Errors

Specifications are based on matched DUT, and IF bandwidth of 10 Hz


Transmission Magnitude Errors for Unmatched Devices

Specifications are based on matched DUT, and IF bandwidth of 10 Hz


Transmission Accuracy Plots

Transmission Phase Errors for Unmatched Devices

Specifications are based on matched DUT, and IF bandwidth of 10 Hz

Transmission Errors for Matched Devices vs. Output Power and IF Bandwidth

Technology is supposed to move. It's supposed to change and update and progress. It's not meant to sit stagnant year after year simply because that's how things have always been done.

The engineers at Copper Mountain Technologies are creative problem solvers. They know the people using VNAs don't just need one giant machine in a lab. They know that VNAs are needed in the field, requiring portability and flexibility. Data needs to be quickly transferred, and a test setup needs to be easily automated and recalled for various applications. The engineers at Copper Mountain Technologies are rethinking the way VNAs are developed and used.

Copper Mountain Technologies' VNAs are designed to work with the Windows or Linux PC you already use via USB interface. After installing the test software, you have a top-quality VNA at a fraction of the cost of a traditional analyzer. The result is a faster, more effective test process that fits into the modern workspace. This is the creativity that makes Copper Mountain Technologies stand out above the crowd.

We're creative. We're problem solvers.

631 E. New York St | Indianapolis, IN | 46202 www.coppermountaintech.com

USA: +1.317.222.5400 Singapore: +65.6323.6546 Latin America: +1.954.706.5920

